A NOTE ON POWERFUL NUMBERS IN SHORT INTERVALS

نویسندگان

چکیده

Abstract We investigate uniform upper bounds for the number of powerful numbers in short intervals $(x, x + y]$ . obtain unconditional $O({y}/{\log y})$ and $O(\kern1.3pt y^{11/12})$ all $y^{1/2}$ -smooth numbers, respectively. Conditional on $abc$ -conjecture, we prove bound ^{1+\epsilon } squarefull y^{(2 \epsilon )/k})$ k -full when $k \ge 3$ These are related to Roth’s theorem arithmetic progressions conjecture nonexistence three consecutive numbers.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on smooth numbers in short intervals

We prove that, for any > 0, there exist a constant C > 0 such that the interval [x, x + C √ x] contains numbers whose all prime factors are smaller than x √ e)+ .

متن کامل

Another Note on Smooth Numbers in Short Intervals

We prove that, for any positive constants δ and ε and every large enough x, the interval [x, x+ √ x(log x)7/3+δ] contains numbers whose all prime factors are smaller than xε.

متن کامل

A note on primes in short intervals

This paper is concerned with the number of primes in short intervals. We present a method to use mean value estimates for the number of primes in (x, x+x] to obtain the asymptotic behavior of ψ(x+x)−ψ(x). The main idea is to use the properties of the exceptional set for the distribution of primes in short intervals. Mathematics Subject Classification (2000). 11NO5.

متن کامل

A note on Primes in Short Intervals

Instead of a strong quantitative form of the Hardy-Littlewood prime k-tuple conjecture, one can assume an average form of it and still obtains the same distribution result on ψ(x + h) − ψ(x) by Montgomery and Soundararajan [1].

متن کامل

Smooth Numbers in Short Intervals

We show that for any > 0, there exists c > 0, such that for all x sufficiently large, there are x1/2(log x)− log 4−o(1) integers n ∈ [x, x + c √ x], all of whose prime factors are ≤ x47/(190 √ e)+ . AMS Suject Classification. 11N25.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of The Australian Mathematical Society

سال: 2022

ISSN: ['0004-9727', '1755-1633']

DOI: https://doi.org/10.1017/s0004972722000995